Esterification prevents induction of the mitochondrial permeability transition by N-acetyl perfluorooctane sulfonamides.
نویسندگان
چکیده
N-Alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anticorrosion agents, among many other commercial applications. The broad use, global distribution, and environmental persistence of these compounds has generated considerable interest regarding potentially toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FOSAA) and N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) induce the mitochondrial permeability transition (MPT) in vitro, resulting in cytochrome c release, inhibition of respiration, and generation of reactive oxygen species. By synthesizing the corresponding methyl esters of FOSAA and N-EtFOSAA (methyl perlfuorinated sulfonamide acetates), we tested the hypothesis that the N-acetate moiety of FOSAA and N-EtFOSAA is the functional group responsible for induction of the MPT. Swelling of freshly isolated liver mitochondria from Sprague-Dawley rats was monitored spectrophotometrically and membrane potential (DeltaPsi) was measured using a tetraphenylphosphonium-selective (TPP(+)) electrode. In the presence of calcium, 40 microM FOSAA and 7 microM N-EtFOSAA each induced mitochondrial swelling and a biphasic depolarization of membrane potential. Mitochondrial swelling and the second-phase depolarization were inhibited by cyclosporin-A or the catalyst of K(+)/H(+) exchange nigericin, whereas the first-phase depolarization was not affected by either. In contrast, the methyl esters of FOSAA and N-EtFOSAA exhibited no depolarizing or MPT inducing activity. Results of this investigation demonstrate that the carboxylic acid moiety of the N-acetates is the active functional group, which triggers the MPT by perfluorinated sulfonamides.
منابع مشابه
Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro.
N-alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anti-corrosion agents, among many other commercial applications. The global distribution and environmental persistence of these compounds has generated considerable interest regarding potential toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FO...
متن کاملStructural determinants of fluorochemical-induced mitochondrial dysfunction.
Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are thought to induce peroxisome proliferation and interfere with mitochondrial metabolic pathways. Direct measurements revealed that PFOA and the unsubstituted sulfonamide of perfluorooctane (FOSA) uncouple mitochondrial respiration by increasing proton conductance. The purpose of this investigation was to characterize structural de...
متن کاملAcrylic Acid Induces the Glutathione-lndependent Mitochondrial Permeability Transition in Vitro
Acrylic acid (AA) is used widely in the synthesis of esters essential in the production of paints, adhesives, plastics, and coatings. The minimal systemic toxicity of AA is attributed to its rapid oxidation to acetyl-CoA and CO2 via the vitamin B12-independent beta-oxidation pathway. This oxidation is localized to the mitochondria and preliminary evidence suggests a possible inhibition of mitoc...
متن کاملAcrylic acid induces the glutathione-independent mitochondrial permeability transition in vitro.
Acrylic acid (AA) is used widely in the synthesis of esters essential in the production of paints, adhesives, plastics, and coatings. The minimal systemic toxicity of AA is attributed to its rapid oxidation to acetyl-CoA and CO2 via the vitamin B12-independent beta-oxidation pathway. This oxidation is localized to the mitochondria and preliminary evidence suggests a possible inhibition of mitoc...
متن کاملMenadione-induced apoptosis: roles of cytosolic Ca(2+) elevations and the mitochondrial permeability transition pore.
In normal pancreatic acinar cells, the oxidant menadione evokes repetitive cytosolic Ca(2+) spikes, partial mitochondrial depolarisation, cytochrome c release and apoptosis. The physiological agonists acetylcholine and cholecystokinin also evoke cytosolic Ca(2+) spikes but do not depolarise mitochondria and fail to induce apoptosis. Ca(2+) spikes induced by low agonist concentrations are confin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical research in toxicology
دوره 19 10 شماره
صفحات -
تاریخ انتشار 2006